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The ability of a single positronium atom to form a semimacroscopic bubble in helium is a remarkable
manifestation of quantum mechanics. Experimental evidence for bubble formation is provided by a
dramatic decrease in the decay rate of the triplet state when the ambient conditions favor its formation.
The phenomenon is observed near the critical point of helium and is well explained by a mean-field
theory in which the positronium atom occupies the ground state of a local potential well induced by its
influence on the average local density. Because of the active role played by the positronium atom in pro-
ducing this localized state, the process is referred to as self-trapping. Similar experiments on other noble
gases also show evidence for self-trapping near the liquid-vapor critical point, but the transition from ex-
tended to localized behavior is gradual. Mean-field theories, which ignore fluctuations, are not success-
ful at these higher temperatures, suggesting that statistical fluctuations strongly influence the distribu-
tion over states of the light atom. This paper presents a theoretical investigation of the localization of
positronium in a dense noble gas which employs the path integral to represent the translational degrees
of freedom of the light atom. It demonstrates that a theoretical model which properly accounts for fluc-
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tuations is able to predict the main features of the experimental measurements.

PACS number(s): 61.20.—p, 36.10.Dr

I. INTRODUCTION

Experimental measurements of density-dependent
properties of an excess light particle (electron, positron,
or positronium atom) thermalized in a fluid exhibit a high
degree of nonlinearity. Among these properties are elec-
tron mobility [1] and positron and positronium annihila-
tion rates [2,3]. The accepted explanation for the non-
linearity is that the light particle (LP) creates a semimac-
roscopic region of altered fluid density in which it be-
comes localized. This process is referred to as self-
trapping because of the active role played by the LP [4].
The alteration in local fluid density caused by the locali-
zation results in large changes in LP properties over
small intervals of the average density of the host fluid.

Early attempts to explain self-trapping used macro-
scopic mean-field theory approximations, referred to here
as density-functional theory (DFT). In DFT a free-
energy functional is constructed that depends on the LP
wave function and the local fluid density. Minimizing the
free-energy functional with respect to the LP wave func-
tion and the local density results in a pair of coupled
equations that self-consistently relate the LP wave func-
tion to the local fluid density. One of these is the time-
independent Schrodinger equation that describes the
effect of the fluid density on the LP wave function while
the second determines the influence of the LP upon the
local fluid density. In an earlier paper [5] it was proved
that most DFT models can be derived from an appropri-
ate density functional but that they differ in their treat-
ment of nonlocal correlations. It is also proved that, for
the simplest variant of DFT, when the thermodynamic
quantities are scaled with respect to their values at the
liquid-vapor critical point, the coupled equations may be
expressed in a universal form and that all the system
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specific quantities are invested in a single dimensionless
universal parameter.

DFT was successfully used to explain the decay of pos-
itrons in helium at low temperatures [6]. However, DFT
is a mean-field theory and thus does not account for den-
sity fluctuations. DFT models indicate that there is a
minimum threshold density below which trapping does
not occur and a maximum density at which the localized
state abruptly collapses. This is contrary to experiments
which show a smooth transition to the trapped state in-
stead of an easily identifiable beginning and end. While
DFT models qualitatively resemble experimental mea-
surements they tend to overemphasize localized states
near the critical point, which results in plots of the decay
rate versus average fluid density with incorrect shape. In
a second paper [7], the authors discovered that including
the possibility of transitions between the trapped and free
states resulted in improvements to the decay rate calcula-
tions. Because DFT is not a microscopic model, it does
not allow for the accurate determination of the correla-
tion functions.

DFT has been surpassed lately by models directly in-
voking the adiabatic approximation. This is a microscop-
ic model which most DFT’s attempt to emulate in which
the translational degrees of freedom of the fluid mole-
cules are treated via classical mechanics. Miller and Fan
[8] have proved that most DFT’s are related to the adia-
batic model through the Jensen inequality. The calcula-
tion of equilibrium quantities based on this model is
achieved by using the classical isomorphism which relates
the path-integral formulation of the partition function of
the quantum LP to that of a closed polymer containing P
fictitious particles. Computational Monte Carlo algo-
rithms devised for classical systems may then be used to
compute quantum mechanical averages for the LP-fluid
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system. This method is referred to as the path-integral
Monte Carlo (PIMC) technique.

The direct use of the adiabatic approximation has a
major advantage over DFT. Because it is a microscopic
model, it automatically includes density fluctuations and
thus allows the calculation of correlation functions that
may be used to determine the effects of self-trapping upon
the microscopic structure of the system. While DFT has
had reasonable success in modeling positron annihilation
above the critical temperature, it has run into severe
difficulties in predicting the decay rate of positronium.
In order to determine whether the problems are connect-
ed with the essential properties of the adiabatic model
rather than the method of approximation, a simulation of
orthopositronium in xenon was carried out at two tem-
peratures for which recent experimental data are avail-
able. In the simulations, the interaction between the po-
sitronium atom and the xenon atoms was represented by
a hard-sphere potential and the interatomic forces were
governed by the Lennard-Jones potential. Several distri-
bution functions for the Ps-Xe system were calculated as
well as the pickoff decay rate of Ps in xenon at each tem-
perature for four values of the density to determine the
density dependence of the annihilation rate. The decay
rate calculations were carried out using two approxima-
tions for the xenon atom electron distribution. The first
assumed that the xenon atoms had no internal structure
while the second assumes that the electron distribution is
rigid and may be approximated by an unperturbed
Hartree-Fock potential.

We will demonstrate that a modified Monte Carlo algo-
rithm known as staging, in conjunction with image ap-
proximation for the hard-sphere potential, results in a
proper exploration of the configuration space and conver-
gence of the theoretical results. The distribution func-
tions obtained from this simulation show that the Ps
atom becomes localized in a low-density cavity from
which xenon atoms are expelled. The theoretical results
indicate that the formation of the low-density cavity be-
comes more likely as the critical point is approached. In
common with the experimental measurements, plots of
the decay rate versus average density on isotherms show
a smooth transition from extended to localized behavior
of the LP.

The paper is divided into five sections. Section II con-
tains a basic description of the self-trapped system in gen-
eral and the importance of the decay rate of positronium
as a signature of trapping. The principles and methods of
the PIMC technique are outlined in Sec. III, which also
contains a discussion of the distribution functions used to
analyze the LP-fluid molecule system and the approxima-
tions used to compute the decay rate of Ps. The results
obtained using the PIMC technique to model Ps in xenon

are discussed in Sec. IV, and conclusions are given in Sec.
V.

II. ENVIRONMENT

When a positron is injected into a fluid, it can either
annihilate with an electron provided by a fluid molecule
or it can combine with a free electron to form a positroni-
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um atom Ps. This atom shares many of its characteristics
with hydrogen and has two forms: parapositronium
(singlet spin state), which decays via a 2y process with a
vacuum lifetime of 1.23X 10710 sec, and orthopositroni-
um (triplet spin), which requires a 3y decay process and
has the much longer lifetime of 1.45X 1077 sec. Due to
the difference in vacuum lifetimes, after approximately
107° sec the probability of finding a surviving atom in the
singlet state is small and only the triplet may be observed.
Because of its long natural lifetime, the chief mode of de-
cay of the triplet is pickoff annihilation, whereby the pos-
itron decays with an electron from the valence shell of
one of the fluid molecules. In the remainder of the paper
references to PS should be inferred to mean orthoposi-
tronium.

Because of its small mass, a Ps atom in a dense fluid
near its liquid-vapor critical point has a deBroglie wave-
length much greater than the mean separation between
the molecules of the fluid. This allows the Ps atom to in-
teract with many fluid molecules at the same time. The
interaction between the Ps atom and the fluid molecules
is repulsive over short distances because of the fermionic
repulsion between the electron of the Ps atom and those
of the fluid molecules. The combination of long deBro-
glie wavelength and short-range repulsion suggests that
the Ps atom will attempt to create a region of low density
around itself. The Ps atom may become localized in this
volume. For intervals of temperature and average densi-
ty where the magnitude of the decrease in free energy
caused by the formation of this region of low density is
greater than the increase in free energy due to the
pressure-volume work required to create it, the self-
trapped state will become stable [4].

The major change in the Ps-fluid system caused by the
formation of the self-trapped state is the large decrease in
the number of fluid molecules near the Ps atom. In at-
tempting to detect the self-trapped state the most
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FIG. 1. Plot of the decay rate of 0-Ps vs scaled density in xe-
non at 300 and 340 K. The density has been scaled with respect
to the critical density. The vacuum decay rate of 0-Ps has been
subtracted from the data. The decay rate has also been scaled
so that the slope of the linear extrapolation at low density is
one.
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straightforward course is to make measurements of quan-
tities that are dependent on the local fluid density. The
decay rate is an obvious choice because the annihilation
rate of the positron is dependent upon the density of elec-
trons in its vicinity. Figure 1 is a plot of the decay rate of
Ps versus average density on two isotherms in xenon [9].
The plot passes through the origin because the vacuum
decay rate of o-Ps has been subtracted from the data.
The straight line is a linear extrapolation of the low-
density behavior and is expected if the Ps atom en-
counters occur independently. It is apparent that the de-
cay rate on each isotherm fails to keep up with the linear
extrapolation. This deviation becomes more pronounced
as the critical temperature is approached. In general, ex-
perimental isotherms of this type can be split into three
regions: (i) the transition region, where an isotherm just
begins to diverge from the linear extrapolation—it con-
tinues until the curve starts to flatten out and form a pla-
teau, (ii) a region consisting of the plateau and part of the
upswing of the curve that follows— in this region self-
trapping predominates, (iii) a region where the isotherm
rejoins the linear extrapolation and the self-trapped state
collapses completely. For the xenon data displayed in
Fig. 1, experimental measurements were not carried out
at sufficiently high densities to observe the final upswing.
However, it is readily observed in experiments on other
gases [10,11].

J

Q=(1/A¥N) [dR [dr [

P—12j20

where rp=r, and fd&=de1 s deN, etc. In (1),
Ay, is the thermal wavelength of an atom, R denotes the
complete set of N atomic positions {R;}, r denotes the
set of P positions defining the ring polymer {r;}, and
U(R) is the total interatomic potential energy. The LP-
atom interaction is accounted for by p(r,r’;€)
=exp{ —€[W(r)+W(r')]/2}, where e=B/P and, as
usual, B=1/kT. Finally, we assume that both the intera-
tomic and LP-atom interactions can be effectively
represented by the spherically symmetric, pairwise addi-
tive potentials (R ) and w (r), respectively,

W)= 3 w(r—R;),
Nziz1

UR)= 3 u(lR,—R;]). 2)
Nz2i>j21

The discretized path-integral representation of the LP
has the same form as the partition function for a closed
polymer chain containing P atoms. This equivalence is
referred to as the classical isomorphism [16]. The quan-
tum spread of the LP is manifested in the finite width of
the distribution of classical polymer particles. Each poly-
mer atom has a harmonic interaction with its nearest
neighbors and represents the quantum particle in a
different state. Each term of the transition matrix
represents the probability amplitude for the quantum
particle to propagate from one intermediate state to
another. In the case that P— «, the continuum limit,
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III. PIMC

A. Discretized path-integral formulation

Since the late 1950s DFT’s have dominated attempts to
describe the LP-fluid molecule system. However, in the
past decade, a new method for calculating equilibrium,
properties of quantum-mechanical systems has become
popular [12-14]. It uses the isomorphism between the
discretized path-integral representation of a quantum
particle [15] and the classical statistics of a ring polymer
to compute quantum averages over the canonical ensem-
ble by means of typical Monte Carlo algorithms. This
method, referred to as path-integral Monte Carlo, re-
places the average potential experienced by the LP in
DFT models with a microscopic description of the LP-
fluid molecule system. Thus the PIMC method automati-
cally includes density fluctuations.

In contrast with the LP, in the temperature range of
interest the thermal wavelength of the fluid atoms is less
than 1 A, so that their translational degrees of freedom
may be treated classically. The combination of a quan-
tum LP and a classical fluid is referred to as the adiabatic
model [16]. The canonical partition function for the LP-
fluid system in the ring polymer isomorphism is

[(m /2met?)*exp] —(m|r;—r1 4, |>/2¢#*) Ip(x;,x; 4 1,€)lexp[ —BU ], 1

the density matrix may be described by the normal path
integral [15].

The polymer isomorphism allows the use of classical
Monte Carlo methods to compute quantum-mechanical
equilibrium averages [17]. For small systems with
smoothly changing potentials, accurate results can be ob-
tained with only a limited number of polymer particles
(P=10) [18]. This property was exploited to study the
structure of water in which a fluid of 125 water mole-
cules, each with a P=3 discretization of the molecular
orientation, was employed [19]. The Monte Carlo tech-
nique was also successfully exploited in a study of the
structure of an excess electron in molten KCI [20]. Un-
fortunately, for systems that require rapidly changing po-
tentials, the standard Monte Carlo (SMC) method is un-
suitable.

B. Staging

As a general rule, accurate results can only be obtained
from the PIMC method if the “length” of the chain be-
tween polymer atoms [e#?/m ]'/2, is small compared to
the length characterizing rapid changes in the interaction
potential. Thus, for rapidly changing potentials, P may
become very large. For example in their study of an ex-
cess electron in xenon and helium, Coker, Berne, and
Thirumalai [21] required approximately 1200 polymer
particles to simulate an electron. The large number of
polymer particles required for systems with rapidly
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changing potentials leads to several problems that make
the use of the traditional SMC method unreliable for
simulating the LP-fluid molecule system.

The potential energy in the harmonic bond between the
polymer particles is proportional to P. Because of the
strong potential between polymer particles in systems
with large P it is very likely that a new acceptable posi-
tion for a particle will be very close to its previous posi-
tion if only a single polymer particle is moved at one
time. Sequential configurations generated in this manner
will be highly correlated. Because of the high correlation
between new acceptable configurations and old ones, a
long time will be required before movements of single
polymer particles result in large scale changes in overall
polymer structure. Unfortunately, this means it will re-
quire a large number of passes for the system to reach
equilibrium. A further complication is introduced if the
LP-atom potential is repulsive. This results in a small
probability of acceptance of a given Monte Carlo move.
The combination of high correlation between polymer
configurations and long equilibration times results in a
slow sampling of the configuration space.

These problems have been understood for years and
many researchers have devised a number of alternative
Monte Carlo methods to address them [18,21-24]. Gen-
erally these methods employ some means of directly sam-
pling the distribution of free harmonic bond lengths for
the chain. Bartholomew, Hall, and Berne [22] use the
normal modes of the chain as random variables. This
method is known to be equivalent to the Fourier series
path-integral technique [25] which has been shown to be
incapable of overcoming the slow sampling of the
configuration space inherent in the SMC technique [25].
Worrell and Miller [26] have used the method pioneered
by Ceperley and Pollock [24] to compute the decay rate
of positrons in xenon.

Sprik, Klein, and Chandler [18] have introduced a
method known as staging in which a small number of pri-
mary particles are used to create large-scale fluctuations
in the polymer structure. A large number of
configurations of secondary particles are then created be-
tween each of the primary particles and their average
probability is used to accurately determine the proper
statistical weight of the given primary particle
configuration. In this method an entirely new primary

J

1—exp[ —2PF(r,r',R;)], [r—RjI ,
p(r’r’Rf;E): 0 otherwise ,

where
F(r,r',R;)=(r—R;[*=d?)(Ir' —=R;|>*—d?) /(A pd )*,
(5)

App is the LP thermal wavelength, and |r—R;| and
|r'—R;| are the respective distances between the fluid
molecule at R; and the polymer particles at r and r'.
Calculations by Liu and Broughton [29] indicate that this
approximation converges more rapidly than the approxi-
mation devised by Barker. The interaction between the

Ir

TERRENCE REESE AND BRUCE N. MILLER

’

47

chain is laid down with every pass, thus bypassing the
problem caused by the slow evolution of the large scale
polymer structure within the SMC technique. The small
number of primary particles decreases the likelihood of
rejection of the new polymer configuration because of un-
favorable LP-fluid molecule interaction potentials, which
is a major problem for Monte Carlo methods that direct-
ly sample the free harmonic bond lengths.

C. Image potential

Because of the dominance of the short-range repulsion
in Ps-fluid molecule interactions, the hard-sphere poten-
tial was considered the best candidate to represent the
polymer particle-fluid molecule interaction potential.
The effect of the hard-sphere potential vanishes outside
the boundary of the P polymer particles. Its effect upon
the density matrix is given by

1, Ir—Ri\ >d
p(r,r',R;€)= 1, , |r—R,|<d , (3)
where R; is the vector representing the position of fluid
molecule i/ and d is the hard sphere diameter, the closest
distance of approach between the centers of a polymer
particle and a fluid molecule. Equation (3) is referred to
as the primitive approximation [18].

In the examples given at the end of Sec. III A the tradi-
tional SMC was able to give accurate results for systems
that require only a limited number of polymer particles
(systems with smooth potentials). However, it fails badly
for systems with steep potentials because a large number
of polymer particles are required to accurately simulate
the LP-fluid molecule interaction. These problems are
compounded by the use of the hard-sphere potential, for
which p(r,r’;e) is a step function. In other words, an
infinite number of polymer particles is required to satisfy
the criterion that #V/3/mP is less than the distance over
which the potential changes rapidly.

Barker proposed an approximation to the normalized
density matrix, based upon the image method, which
forces the correct boundary conditions at the hard-core
surfaces [27]. This results in a decrease in the number of
polymer particles required for convergence. In these cal-
culations, we will use the image approximation devised
by Whitlock and Kalos [28]

—R,|>d
4)

[
fluid molecules is represented by the Lennard-Jones 6-12
potential.

D. Important properties

1. Structural quantities

The properties that can be determined from an equilib-
rium Monte Carlo study of the LP-fluid molecule system
can be divided into two types, structural and thermo-
dynamic. Structural quantities detail information con-
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cerning the local polymer-fluid and fluid-fluid structure
on a microscopic level. For example, the polymer-fluid
radial distribution function

gpn=p( 3 P13

Nziz1 P—12k20

5<R,.—rk—r)> ©)

gives information concerning the local fluid environment
around the polymer particles. Information concerning
the average density of the fluid about the geometric
center of the polymer is provided by the distribution
function

> S(R,-—rc_m.—r)> . 7

ger1=p"(
N2i=>1

It can be used to determine whether localization occurs
at a certain density and temperature, and the size of the
well formed by the localized polymer. Most physical
properties of the fluid can be determined from the inter-
molecular radial distribution function

gff<R>=p*1< > S(R,-—Rj—R)>. ®)

N>i>j>1

Information concerning the behavior of the polymer
may be determined from the mean-square displacement
(MSD) between two polymer particles on the chain
separated by an imaginary time interval of ¢—¢’
[0=(t—t)<BA], R¥t—t)={|r(t)—r'(t")]*). For a
free particle this function is given by [16]

Rt —1')=3A2p(t — 1) Bh—(t—1t)]/(BA? . (9)

For an extended LP, a plot of R(t —t') vs t —t' has the
shape of an inverted parabola with a strong maximum at
B#/2. This should be compared with the case of a highly
localized polymer configuration, where the value of the
MSD is practically independent of the imaginary time
difference except near the end points O and 3%.

2. Decay rate

The pickoff decay rate of PS is proportional to the
overlap between the positron of the Ps atom and the
effective density of fluid electrons of opposite spin avail-
able for annihilation. The electron charge distribution
around a fluid nucleus at R’ is defined as f(|R'—r|),
where r is the position at which the charge distribution is
to be determined. The quantum-mechanical decay rate
operator for a positron at r is then given by

A= 3 fUR;—r.] (10)
NZj>1

(the position of the Ps electron is given by r_) [8]. If we

express (10) in terms of r_ ,, (=(r, +r_)/2], the center

of mass of the Ps atom, and w (=r, —r_), the vector dis-

tance between the positron and the electron, we arrive at

GRIp=[ [ 3 fUR=1.m—0/2)lpg)?
NZj>1
X |Yo(re m ) 2do dr, , (11)

where, in (11), we have assumed that the Ps wave func-
tion separates into the overall translational factor

Yol 1, ) and the relative factor gy(w).

In the approximation employed here, both the posi-
tronium atom and the fluid molecules are treated as com-
posite particles. The path integral represents the transla-
tional coordinates of the positronium atom. Thus, in the
discrete version,

P—1
(e )IP= 5 3 805 —Tem )
i=0

where r; is the position of polymer particle i. If we as-
sume that the internal state of Ps is unaffected by the
presence of the fluid molecules, then @) may simply be
approximated by the ground-state wave function, so that

lpol@)*=exp][ —w/ay]/8ma}

where, as usual, a is the Bohr radius. Addressing these
points in (11) yields

(|R|y)=(1/87Pa})
X 3> > fdwexp[—w/ao]

P—12i20N2j21
XfR;—r,—@/2]) .
(12)

The mean value of the decay rate in the adiabatic mod-
el is given by [8]

A=(X)=(1/2) [dR [ dr(y|R$)D(pexp[ —BU(R)],

(13)
where
P—1
D(p)= [] (m /2meri?)*?
j=0
Xexp[—(mIrj-—r}+1!2/26ﬁ2)]
Xp(r;,r;4,€),
Jrj+1 (14)

Z= [dR [drD exp[—BU] .

From (13) it is clear that the decay rate operator con-
sists of a pairwise sum, where each polymer particle-atom
pair contributes

k'(|RJ—r,f) )
A'(|Rj—r,~l)=(1/8ﬂ'Pa8)
Xfdcoexp[—co/ao]f(|Rj—r,-—a)/2|) .

(15)

Thus A is governed by g, the polymer-fluid radial distri-
bution function. Summing over all pairs and substituting
in (13) yields, for the thermal average of A,

7L=(1/87ra(3,)pde’fdwexp[—a)/ao]

XfUR —w/2])g,(R"), (16)

where R’ is the vector distance between a polymer parti-
cle and a fluid molecule R’=|R’| and p is the average
fluid density. Miller and Fan have derived a similar ex-
pression for the decay rate of a positron in a classical fluid

[8].
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Equation (16) determines the mean decay rate of the Ps rate may also be calculated by computing the value of
in the fluid. The main approximations are the separabili- N P—1
A[=(1/87Pa3) 3 3 exp[—2|R;—1;|/a,])
j=1i=0

ty of the positronium state vector and the form of the
electron density f. In our calculations we have used two

approximations for f. The first represents the electron
distribution as a delta function [f(|[R—w/2|)
If we remember that 8(R—w/2)

=6(R—®@/2)].
=88(2R —w) and carry out the integral over  in (16) we

for each pass and then computing the average. The re-
sults of this calculation and the results from the mean de-
cay rate calculated using the radial distribution function
provide a consistency check on the resolution of the dis-
tribution functions. If the results of the methods closely
(17) agree, then it is reasonably certain that an appropriate
value for the minimum resolution of the histogram of the
distribution functions has been chosen. The variance of
the decay rate o2, which is determined by computing

obtain
A=p [ dR exp[ —2R /a, g, (R)/(ma}) .

In the 8-function approximation the decay rate is merely

the overlap of the molecular coordinates and the portion
of the positron wave function outside the hard-sphere di- (A2)—(R)?, characterizes the spread around the aver-
ameter. age decay rate. This is an important measure of fluctua-
The second approximation also assumes that the posi- tions in the Ps environment which is not obtainable from
tron does not induce any perturbations in the fluid mole- DFT’s.
cule wave function. However, rather than being concen-
trated at a point, the electron density is taken from the E. Algorithm
In this
‘ An algorithm was devised to take advantage of the

staging method to calculate the structural and thermo-

Hartree-Fock solution for the atomic orbitals.
The algorithm is

work the Laplacian of the Hartree-Fock potential for xe-
non was used to compute a table of values for the elec-
tron distribution [30]. It was determined that the unper-
turbed electron distribution for xenon can be adequately

represented by a sum of Yukawa functions

dynamic properties of Ps in fluids.

2 -
f(x)=aexp][—ax]/x+Bexp[—bx]/x , (18) Y ()
\‘ O
where a, B, a, and b are constants that are determined \
from a least-squares fit with the data table. If (18) is em-
ployed in the integral over @ we arrive at the expression \
\<< 1t \,

A=p [ dR[ Aaly(a)+(1— A)bI;(b)]g,,(R)/(2Ra}) ,

S~
~—o

I (a)=2a exp[ —aR ]/(agc?)
—exp[ —2R /ay][2Ra /c +2a /(ayc?)] , (19) —

c=(1/ay’—(a/2),
where I5(b) is simply I;(a) with b replacing a, A =a/a,
and (1— A4)=pB/b. In the self-consistent field (SCF) ap-
proximation the electron density is now allowed to 0.08 KN
penetrate the hard-sphere diameter, which results in a P
greater overlap between the electron density and the posi- 0.06
tron wave function. This should increase the likelihood ’
of an annihilation with the positron and result in a higher
value of the decay rate for the extended SCF function 0.04
than for the -function approximation. !
Figure 2(a) compares A'(r) for these two cases. In the ‘.‘
first case, where the electronic charge is assumed to be 0-02p ¢ / NN
concentrated at a point, the value of A'(0) is almost ten H hR ~ -
times the value for the extended charge distribution. o 1 =
However, it goes to zero near 1.8 A, well before the ex- 0 2 3 4
tended distribution, which has a much larger effective
range. From (17) it is clear that r?A’(r) is the relevant
quantity for the decay rate. This is plotted for each case
in Fig. 2(b) where the difference in the falloff of the two

1
]
]
[]
[}
1
]
]
1
[}
1

Se

FIG. 2. (a) Plot of A'(7) vs r for the §-function approximation
and the Hartree-Fock approximation for the electron distribu-
tion function used to approximate the decay rate. The curve
composed of long dashes corresponds to the extended SCF over-

functions can be seen much more readily. In the case of
lap function; the short dashes correspond to the 8-function elec-
tron charge distribution. (b) Plot or r2A’ vs r for the §-function

the 8 function, r?A’ has approximately the shape of a

Gaussian while the extended charge distribution results
approximation and the Hartree-Fock approximation for the

electron distribution function. The code is the same as in (a).

in a long tapering tale.
For the 6-function charge distribution the mean decay
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dependent upon four characteristic parameters Ap,, the
Ps thermal wavelength o, the Lennard-Jones distance
scale p* (=po?), the average density of the fluid, and d,
the hard-sphere diameter. The only parameter that is not
already known is the value of d. It will have to be es-
timated or determined from comparisons between
theoretical computations and experimental results. In
preliminary calculations it was discovered that, at densi-
ties approaching the critical density, convergence is un-
likely to occur within a reasonable number of passes.
The problem arises because, at higher densities, the re-
creation of an entirely new primary polymer chain at
each pass results in a high initial rejection rate due to the
large probability of overlap between the polymer particles
and fluid molecules. Thus, out of a large number of pri-
mary polymer configurations, only a few will be used to
compute the properties of the Ps-fluid system. Because of
this discovery, and in contrast with other implementa-
tions of staging [18], the algorithm was modified so that
only a segment of primary particles is moved at one time.

The algorithm first creates an initial configuration for
the system. The initial primary polymer configuration is
set up in accordance with Levy’s recursive scheme for
directly sampling conditional Brownian motion paths
[31,21]. The initial point on the primary chain is ran-
domly selected in a cube having sides of length 3Ap,. The
fluid molecules are randomly distributed within the cube
with the only constraint being that the distance between
the center of any fluid molecule and any polymer particle
must be greater than d. The energy and the statistical
weight of the initial configuration is then computed. The
weight and kinetic energy of the LP is calculated by the
original staging method.

The image potential is used to determine the effective
polymer-fluid interaction energy for each of the secon-
dary particles. A number of secondary particle
configurations are created between each primary particle
and its neighbor and the value of the statistical weight for
each secondary configuration is calculated. The Metrop-
olis algorithm is then used to calculate the value of the
statistical weight for the primary configuration.

New configurations for the primary particles may now
be generated by moving chain segments of length n. A
new trial configuration of the segment is generated by us-
ing Levy’s iterative procedure for creating an entirely
new primary polymer configuration [21]. This procedure
is repeated, traversing the primary polymer chain until
the primary particle is reached that is n particles away
from the starting particle. Thus, only the initial primary
particle remains stationary. After each attempted seg-
ment move, a set of secondary configurations are grown
between each of the new primary particles and used to
determine the weight of the new segment configuration
and whether or not it will replace the old segment
configuration.

Because the starting primary particle is not moved
there are P, —n attempted segment moves per pass where
P, is the number of particles in the primary chain. The
completion of this process results in a different
configuration for the primary polymer particles after
every pass. After the new polymer configuration has
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been established, the traditional SMC technique is used
to create a new configuration for the fluid molecules.
Averaging, in which only the primary particles contrib-
ute, is carried out over the desired quantities after every
pass. The computation of the partition function Q leads
to the system free energy through the equation
A=(—1/B)In(Q) , where A is the Helmholtz free ener-
gy-
Theoretically, the creation of a new polymer
configuration every pass results in a high probability of
large-scale fluctuations in the polymer structure. In prac-
tice, the low acceptance rate due to the high likelihood of
overlap between polymer particles and fluid molecules
leads to very slow convergence. The use of chain seg-
ments to create new polymer configurations results in a
much lower rejection rate of trial configurations. Howev-
er, the smaller the chain segment, the lower the probabili-
ty that large-scale fluctuations in the polymer structure
will occur. Thus it is important for the chain segment
length to be large enough to allow large-scale fluctuations
in the structure to occur over a reasonable amount of
time without making it so large that the rejection rate be-
comes too high to allow for exploration of the
configuration space.

The staging algorithm has an advantage over several
other methods used to overcome the slow convergence of
the SMC technique. Because the positions of the secon-
dary particles depend only upon the end points, it is more
amenable to vectorization. In addition, the same Gauss-
ian random numbers can be reused to calculate the secon-
dary configurations between different primary particles
because the secondary configurations are independent.
This results in some saving in time due to the continued
reuse of previously calculated Gaussian random numbers.

IV. RESULTS

A. Convergence

In order to ascertain if the PIMC technique in con-
junction with the image approximation is capable of
simulating the Ps-fluid molecule system, calculations
were made using the Lennard-Jones 6-12 parameters for
xenon (0 =4.0551 A, €=229 K) to model the fluid. The
calculations were made at four densities: p*=0.017,
0.088, 0.17, and 0.35 (0.05p., 0.25p., 0.5p., and p,) for
each of two temperatures (77=300 and 340 K). For
reasons which will ;be explained in Sec. IV C below, d was
selected to be 2.5 A. In order to minimize the influence
of finite-size effects, the length of the side of the cube in
which the calculations take place is 3Ap,. The total num-
ber of fluid molecules was determined by this size and the
average density.

If a Monte Carlo algorithm is to be considered success-
ful it must first be demonstrated that its results are reli-
able. The goal of the computations described here is to
obtain statistical averages which are correct in the ther-
modynamic limit. This requires that the number of mole-
cules, the number of polymer sites, and the number of
passes through the system be sufficiently large that the
averages of interest are not significantly altered if they
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are increased. This reliability of results is referred to as
convergence. There are two types of convergence. The
first type is convergence with respect to the number of
passes. This property is used to determine whether the
results approach an equilibrium value or continue to fluc-
tuate indefinitely. To ensure that the number of system
passes was sufficient in each case, the average root-mean-
square displacement (RMSD) at the polymer halfway
point (V' (R2(B#%/2))) and the average decay rate were
continuously monitored. They usually converged after
about 5000 passes; however, the RMSD value converged
more rapidly as the density was increased. The calcula-
tions were carried out to 10000 passes in order to ensure
that the results had stabilized. In each of the calcula-
tions, the initial configurations were allowed to anneal for
1000 passes before averaging commenced.

The second kind of convergence is stabilization with
respect to the algorithm’s extensive quantities, such as
particle number. In other words, it is important to en-
sure that increases in polymer number and total molecu-
lar population will not lead to changes in the computed
results. Unfortunately, the radial distribution functions
showed a slower convergence with particle number.
Since these quantities are dependent upon the primary
particles it is possible to increase their number and leave
the number of secondary particles stable at 32. The larg-
est polymer required 44 primary particles to stabilize g,.
Size effects were minimized by choosing the overall sys-
tem size to be at least three times the thermal wavelength
of the LP.

B. Structural results

Figures 3(a) and 3(b) are plots of the RMSD for each of
the four densities at 77=300 and 340 K. The RMSD
gives an indication of the number of states available to
the system. In both figures p*=0.0 is the theoretical re-
sult for a polymer that has no fluid molecules to interact
with. At p*=0.017, the RMSD is very near the value for
the free polymer in both cases. As the density is in-
creased, the number of states available to the polymer de-
creases until, at the critical density (p* =0.35), the value
of the RMSD for 30 out of the 44 primary particles are
within 5% of the value at the midpoint (3%/2), indicating
that the polymer is highly compressed. Moreover, it is
clear from the figure that the maximum extent of the po-
lymer at the critical density is roughly half that of the
free particle, revealing a strong tendency of the Ps to lo-
calize. In the remainder of this subsection, differences
between the trapped and the extended state for the
structural quantities defined in Sec. IIID will be ex-
plored.

Figures 4(a) and 4(b) are plots of the two polymer-fluid
distribution functions defined in Sec. III D for p*=0.017
and 0.35 at T=300 K. In Fig. 4(a) there is no restriction
on the polymer center (g/,), while in Fig. 4(b) it is con-
strained to lie at the origin (g,.). These plots can be used
to evaluate the microscopic differences between the ex-
tended and the localized states. Figure 4(a) shows that
while both distribution functions begin to increase at
r=2.5 A, at the lower density, the increase occurs more

TERRENCE REESE AND BRUCE N. MILLER 47

rapidly than at the critical density. In fact, the extended
state begins to level off well before 10 A while the distri-
bution function for the localized state continues to in-
crease beyond 10 A. Beyond 10 A the distribution func-
tion at the critical density is slightly greater than one.
The system size does not allow us to determine whether
this is a finite-size effect or the beginning of a small oscil-
lation resulting from the intermolecular repulsion at
short distances. These results also support the expecta-
tion that fluid molecules are more easily displaced at the
critical density. Figure 4(b) shows a nonvanishing value
of gs(r) for p*=0.017 as r —0. This suggests that the
polymer on occasion envelops fluid molecules. However,
for the localized state, g/ (r)—0 as —0, indicating that
the polymer has been compressed and has completely ex-
pelled fluid molecules from the vicinity of the polymer
center. Experimental results indicate that trapping be-
comes more likely as the liquid-vapor critical point is ap-
proached. This result is also indicated in Figs. 5(a) and
5(b), which are plots of the polymer-fluid and fluid-
polymer center radial distribution functions at the critical
density for 7=300 and 340 K. In each plot the value of
the respective distribution function is greater for 7'=340
K than for T=300 K, except near the cell boundary,
where both functions level off. This indicates that at
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FIG. 3. (a) Plot of the RMSD vs the imaginary time interval
for p*=0.0, 0.017, 0.008, 0.17, and 0.35 at T=300 K. p*=0.0
represents RMSD for a polymer particle that does not interact
with any fluid molecules. Note that localization increases with
density. (b) Plot of RMSD vs imaginary time for p*=0.0,
0.017, 0.088, 0.17, and 0.35 at T=340 K.



47 POSITRONIUM IN XENON: THE PATH-INTEGRAL APPROACH

T=300 K the fluid molecules are more easily displaced
than at T=340 K.

In general, the polymer centered radial distribution is
far more noisy than the ordinary fluid-polymer radial dis-
tribution function. This is a consequence of the informa-
tion loss incurred by conditioning on the polymer center.
However, at distances less than 10 A, g,.(r) is much
smoother for the critical density at both temperatures
than for p*=0.017 indicating that, as the LP becomes
more confined, the density fluctuations in its vicinity de-
crease. We will have more to say about this in the next
subsection.

C. Decay rate

An important goal of this project is to recreate the
transition region in experimental measurements of the Ps
pickoff decay rate. Theoretical computations of the
pickoff decay rate based on DFT indicate a sudden turn-
ing on or off of the localized state. Below a threshold
density the LP is undoubtedly extended and above a cer-
tain density, depending upon the temperature, localiza-
tion collapses. However, experiments show a smooth
transition from the extended to the localized state, in-
stead of a discontinuity where localization begins and
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FIG. 4. (a) Plot of the polymer-fluid radial distribution func-
tion vs position for p*=0.017 [gfp3(r)] and 0.35 [g/,(r)] at
T=300 K. (b) Plot of the density of fluid molecules measured
radially from the polymer center of mass vs position for
p*=0.017 [gfc3(r)] and 0.35 [g/.(r)] at T=300 K.
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ends. The reason for this incongruity is that DFT’s ig-
nore density fluctuations which are important in most
fluid phenomena. Because PIMC is a microscopic model
it automatically includes the density fluctuations and thus
has a better chance of recreating the transition region.

Equation (17), which can be used to calculate the Ps
decay rate, requires an accurate determination of g,(r).
The polymer-fluid radial distribution function as calculat-
ed with our algorithm is a histogram in which the density
of fluid molecules is computed with a shell of width dr.
The value of dr is the resolution of the histogram: Small-
er values of dr result in a more accurate determination of
the distribution function, but require longer computation
times to obtain good statistics. It is important to deter-
mine a practical value for dr. In Sec. III it was stated
that the mean decay rate for the 8-function approxima-
tion may also be calculated by computing

_ P—1 N
A=(1/87Paj) S, 3 exp[ —2|R;—r1,|/a,] (20)
i=0j=1

after each pass. The mean decay rate is the sum of the
X’s for each pass divided by the total number of passes.
Using this method, the accuracy of the decay rate is
dependent upon the number of passes, but not dr. The
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value of the mean decay rate calculated using (20) can be
used to determine a useful value of dr for g, (7). In our
preliminary tests it was determined that 0.1 A provides
sufficient accuracy. It is less than - of any of the
significant length scales in the system. Computation of
the mean decay rate via (16) has the major advantage that
it allows the use of different electron density functions f
to be tested without having to run the entire computa-
tions over again.

The most important fluid specific value that needs to be
determined for the computation of the decay rate is the
hard sphere diameter d. It determines the minimum sep-
aration between a polymer particle and fluid molecule
and thus determines the shape of the polymer-fluid radial
distribution function. The larger the value of d, the
smaller the value of gfp(r) at shorter distances, and the
lower the probability of an overlap between the atomic
electrons and the positron wave function. A possible can-
didate for d may be estimated if we compute the ratio R
of the experimental value of the decay rate at a specific
density to the value of the linear extrapolation at that
same density, and use it to help determine an approxi-
mate value for d. The critical density is a good choice be-
cause it is known that the experimental deviation from
linearity there is large, thus minimizing the influence of
experimental uncertainty. If we designate A, as the value
of the linear extrapolation and A, as the value of the ex-
perimental decay rate at the critical density, then
Rg=A\, /Ay The ratio of A;, the decay rate computed by
the algorithm at a given value of d at the critical density,
to Ay (from the simulation) is defined as R;. It was
judged that if R;~Rp, then an approximate value for d
had been determined.

Because of the certainty that the Ps atom is extended
at the density p*=0.017, its decay rate was computed
from the simulation and then used to determine the value
of the linear extrapolation at the other three density
values. It was assumed that the minimum yalue of d was
o /2 which for xenon meant that d 22.0 A. The result-
ing tests indicated that d =2.5 A was a more useful (ac-
curate) value of the hard sphere diameter than 3.0 A.
This turns out to be half the sum of the Lennard-Jones
diameter and the mean e "-e ~ separation in positronium.
The decay rate was calculated at p*=0.017 for both
T=300 and 340 K at d=2.5 A. In common with the ex-
perimental observations, the decay rates are nearly the
same for the two temperatures, which is an indication
that 2.5 A is an appropriate, if not precise value for d.

Figures 6(a) and 6(b) are plots of the decay rate ob-
tained using the 8-function approximation at the four
density points for 7=300 and 340 K, respectively. The
decay rate is scaled such that the value of the linear ex-
trapolation is equal to one at the critical density. The ex-
perimental curves, similarly scaled, are also plotted for
comparison. In each figure the theoretical decay rates for
p*=0.088 and 0.17 are very close to the experimental
values for those densities. However, at the critical densi-
ty there is a divergence between experimental and
theoretical decay rates. The percentage difference be-
tween Rp and Ry is the same for both 77=300 and 340

K. In each case the value of the computed decay rate is
greater than the experimental measurements, suggesting
a greater tendency for localization of Ps at the critical
density than the model predicts. Table I compares the
results obtained by using the & function with the
Hartree-Fock electron distribution. As can be seen there
is only a 2% difference between the decay rates calculat-
ed for p*=0.17 and 0.35 using the extended function,
suggesting that, in this version of the model, there are too
many electrons in the vicinity of the positron.

The variability of the environment the Ps atom experi-
ences may be studied by examining §,, the ratio of the
standard deviation o, to the mean decay rate. Small
values of §; suggest that the LP experiences small density
fluctuations. However, a value of {, near unity indicates
the presence of large local fluctuations in the density. In
ascending order for each of the four density points at
T =300 K the values of §; are 0.75, 0.5, 0.45, and 0.44.
It is not surprising that the value of {, is large at small
densities where density fluctuations are known to be
large. It is noteworthy that {; remains significant at the
higher densities. This may result from the increase in
compressibility as the critical point is approached.
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TABLE 1. Comparison of results obtained with the 6-
function Hartree-Fock electron distribution.
P* ip Xnp Ap }Lrl A'Tz Sy
T=300 K
0.017 36X36 1.0 1.0 1.0 0.75
0.088 40X 32 83.4% 78% 87% 0.5
0.17 40X 32 65.6% 59% 73.6% 0.45
0.35 44X 32 37.4% 49% 71% 0.44
T=340 K
0.017 36X32 1.0 1.0 1.0 0.83
0.088 36X32 1.0 90% 94% 0.5
0.17 40X 32 75% 68% 86% 0.45
0.35 40X32 49% 59% 84% 0.4

V. CONCLUSION

Early models that were used to describe the LP-fluid
molecule system relied on DFT as an approximation to
the adiabatic model. However, the failure of models
based on DFT to accurately reproduce experimental mea-
surements of LP properties in fluids spurred attempts to
create a microscopic model of the LP-fluid molecule sys-
tem. The classical isomorphism exploits the equivalence
between the discretized path-integral representation of a
quantum particle and the classical partition function of a
closed polymer molecule. It thus allows the statistical
methods developed for classical systems to be used in the
computation of equilibrium averages for quantum-
mechanical systems. Because it is a microscopic model
the PIMC technique automatically includes the effect of
both density and quantum fluctuations on the averages of
the desired properties, which is lacking in most realiza-
tions of DFT.

A consequence of the large number of polymer parti-
cles required to approximate the rapidly changing poten-
tials used to simulate the LP-fluid molecule interactions
is that the SMC is incapable of sampling the
configuration space in a reasonable amount of time. A
modification of the staging algorithm overcomes this
problem by building up the total chain configuration in
stages. The first stage, which consists of a small number
of polymer particles, creates the large scale structure of
the polymer chain. The small number of polymer parti-
cles results in a decreased likelihood of an overlap be-
tween any of the polymer particles and the fluid mole-
cules. Creating new polymer configurations by moving a
large segment of primary particles increases the probabil-
ity of large-scale polymer fluctuations, thus overcoming
the slow sampling of the configuration space that plagues
the traditional SMC. The averages over secondary chains
inserted between adjacent primary polymer particles can
then be used to calculate the statistical weight for the pri-
mary chain configuration.

The use of PIMC also allows the calculation of micro-
scopic structural quantities which is not possible through
DFT approximations. These can be used to ascertain the
differences in polymer and fluid properties between local-
ized and extended states. The polymer-fluid radial distri-
bution function is important in computing the pickoff de-
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cay rate of orthopositronium in fluids. The results of cal-
culations of structural quantities computed for Ps in xe-
non at 300 and 340 K indicate that, as the critical density
is approached, the polymer particles are pushed closer to-
gether and the density of fluid molecules near the poly-
mer center becomes markedly reduced. The decrease in
fluid density indicates that a cavity is formed, while the
decrease in polymer density at large distances from the
polymer center indicates that the polymer particles be-
come confined to the cavity. Comparisons between
structural quantities calculated at 7=300 and 340 K in-
dicate that localization is slightly stronger at 300 than at
340 K. These results indicate that localization occurs
more readily near the liquid-vapor critical point. Thus,
the PIMC model has recreated an important result that is
known from experimental measurements.

One of the major goals of this work was to determine if
the PIMC technique could recreate the transition region
of the experimental measurements of Ps annihilation in
fluids. DFT approximations indicate that the LP is ei-
ther trapped or extended, resulting in an unnatural
discontinuity in decay rate predictions. In the PIMC
technique, the transition is softened and compares more
favorably with experiment.

It is interesting that R, for the &-function approxima-
tion was much closer to Ry than for the extended ap-
proximation. This may result from the Coulombic repul-
sion of the positron from the atomic nucleus, and sug-
gests that the internal states of either or both the fluid
atoms and positronium are altered by their mutual prox-
imity. However, at the critical density, the theoretical
calculations for the §-function approximation did not de-
viate as much from the linear extrapolation as the experi-
mental measurements. In our opinion, this constitutes a
limitation of the present model. The fact that a flat “pla-
teau” is found in experimental lifetime measurements in
argon, xenon, and ethane, to name a few, led us to antici-
pate that this feature was robust, and would not be overly
sensitive to the choice of potential. It was surprising that
the semblance of a plateau could only be obtained from a
very limited range of d. This suggests that, even in the
critical region, the degree of localization depends sensi-
tively on the details of the Ps-atom effective potential,
and may partially explain the difficulties encountered by
DFT in modeling the experimental data. It was recently
pointed out to us that the hydrogen-atom—xenon poten-
tial may provide useful guidance for designing a more
realistic Ps-Xe interaction potential [32].

A computation that takes into account all internal de-
grees of freedom would be unrealistic at this time. How-
ever, in future work it would be worthwhile to consider a
model in which both the electron and positron in the Ps
atom are represented by their own path integral. It
would also be interesting to include the effect of polariza-
tion which, for xenon, could be considerable.

An intriguing feature of these calculations is the large
variability in the Ps environment found at all densities. It
strongly suggests that experimentalists should consider
studying the distribution of annihilation rates in addition
to extracting mean values from the data [33]. Some time
ago McNutt and Sharma introduced a semiempirical
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technique for computing the decay rate of orthopositroni-
um which includes the effects of fluctuations at low and
moderate densities [34]. A further use of the techniques
developed here would be a microscopic ab initio test of
their model.
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